Genetic Pest Management

Yadav, A.K., Butler, C., Yamamoto, A., Patil, A.A., Lloyd, A.L. and Scott, M.J. (2023) CRISPR-Cas9 based split homing gene-drive targeting doublesex for population suppression of the global fruit pest, Drosophila suzukii. PNAS, 120 (25): e2301525120. https://doi.org/10.1073/pnas.2301525120.

Patil, A.A., Klobasa, W., Espinoza-Rivera, D., Baars, O. and Scott, M.J. (2023) Development of transgenic corn planthopper Peregrinus maidis that express the tetracycline transactivator. Insect Mol. Biol. in press.https://doi.org/10.1111/imb.12836

Scott, M.J., Morrison, N.I., Simmons, G.S. (2022) Transgenic approaches for sterile insect control of dipteran livestock pests and lepidopteran crop pests. In: “Transgenic Insects: Techniques and Applications, second edition” (Benedict, M.Q., and Scott, M.J. eds.) CABI, Wallingford, UK, pp 340-358. Hardcover ISBN: 978-1-80062. DOI: 10.1079/9781800621176.0017

Kandul, N.P., Liu, J., Buchman, A., Shriner, I.C., Corder, R.M. Warsinger-Pepe, N., Yang, T., Yadav, A.K., Scott, M.J., Marshall, J.M. and Akbari, O.S. (2022) Precision Guided Sterile Males Suppress Populations of an Invasive Crop Pest. GEN Biotechnology, 1: 372-385. http://doi.org/10.1089/genbio.2022.0019

Yamamoto, A., Yadav, A.K. and Scott, M.J.(2022) Evaluation of additional Drosophila suzukii male-only strains generated through remobilization of an FL19 transgene. Frontiers in Bioengineering and Biotechnology10: 829620. doi:10.3389/fbioe.829620

Tait, G., et al. (2021) Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology114: 1050-1974.DOI: 1093/jee/toab158

Li, F., Yamamoto, A., Belikoff, E.J., Berger, A., Griffith, E.H. and Scott, M.J. (2021) A conditional female lethal system for genetic suppression of the global fruit crop pest, Drosophila suzukiiPest Management Science,77: 4915-4922. https://doi.org/10.1002/ps.6530

Concha, C., Yan, Y., Arp, A., Quilarque, E., Sagel, A., Pérez de León, A., McMillan, W.O., Skoda, S.R. and Scott, M.J. (2020) An early female lethal system of the New World screwworm, Cochliomyia hominivorax, for biotechnology-enhanced SIT in area-wide pest management. BMC Genetics, 21: 143. https://doi.org/10.1186/s12863-020-00948-x

Yan, Y. and Scott, M.J. (2020) Building a transgenic sexing strain for genetic control of the Australian sheep blow fly Lucilia cuprina using two lethal effectors. BMC Genetics, 21: 141. https://doi.org/10.1186/s12863-020-00947-y

Yan, Y., Williamson, M.E. and Scott, M.J. (2020) Using Moderate Transgene Expression to Improve the Genetic Sexing System of the Australian Sheep Blow Fly Lucilia cuprinaInsects11: 797. https://doi.org/10.3390/insects11110797

Webster S.H., Vella, M.R. and Scott, M.J. (2020) Development and testing of a novel Killer-Rescue self-limiting gene drive system in Drosophila melanogaster. Proceedings of the Royal Society B, 287: 20192994. http://doi.org/10.1098/rspb.2019.2994.

Knudsen, K.E., Reid, W.R., Barbour, T.M. Bowes, L.M., Duncan, J., Philpott, E., Potter, S. and Scott, M.J. (2020) Genetic variation and potential for resistance development to the tTA overexpression lethal system in insects. G3,10, 1271-1281. https://doi.org/10.1534/g3.120.400990. One of 4 articles selected for “spotlight” in April 2020 issue.

Yan, Y., Williamson, M.E., Davis, R.J., Andere, A.A., Picard, C.J. and Scott, M.J. (2020) Improved transgenic sexing strains for genetic control of the Australian sheep blow fly Lucilia cuprina using embryo-specific gene promoters. Molecular Genetics and Genomics, 295(2): 287-298. web

Long, K.C. et al. (2020). Core commitments for field trials of gene drive organisms. Science 370: 1417-1419. DOI: http://10.1126/science.abd1908

Jaffri, S.A., Yan, Y., Scott, M.J. and Schetelig, M.F. (2020) Conditional expression systems for Drosophila suzukii pest control. In: “Drosophila suzukii management”, (Garcia, F. R. M. ed.), Springer International Publishing, Cham, Switzerland, pp 195-214. Doi: http://10.1007/978-3-030-62692-1

Scott, M.J., Gould, F., Lorenzen, M.D., Grubbs, N., Edwards, O.R. and O’Brochta, D.A. (2018) Agricultural Production: Assessment of the Potential use of Cas9-mediated Gene Drive Systems for Agricultural Pest Control. Responsible Innovation,5 (sup1): S98-S120. https://doi.org/10.1080/23299460.2017.1410343

Dearden, P.K., Gemmel, N.J., Mercier, O.R., Lester, P.J., Scott, M.J., Newcomb, R.D., Buckley, T.R., Jacobs, J.M.E., Goldson, S.G. and Penman, D.R. (2018) The potential for the use of gene drives for pest control in New Zealand: a perspective. J. Royal Society of New Zealand, 48: 225-244. doi:10.1080/03036758.2017.1385030 web

Scott, M.J., Concha, C., Welch, J.B., Phillips, P.L. and Skoda, S.R (2017) Research advances in the screwworm eradication program over the past 25 years. Entomologia Experimentalis et Applicata, 164: 226-236. doi: 10.1111/eea.12607 web

Yan, Y., Linger, R.J. and Scott, M.J. (2017) Transgenic early-larval sexing systems for genetic control of the Australian sheep blow fly Lucilia cuprina. Scientific Reports, 7, 2538. doi:10.1038/s41598-017-02763-4. web

Concha, C., Palavesam, A., Guerrero, F.D., Sagel, A., Li, F., Hernandez, Y., Pardo, T., Quintero, G., Vasquez, M., Phillips, P.L., McMillan, W.O., Skoda, S.R. and Scott, M.J. (2016) A transgenic male-only strain of the New World screwworm for an improved control program using the sterile insect technique. BMC Biology, 14: 72. web

Scott, M.J. and Benedict, M.Q. (2015). Concept and history of genetic control. In: “Genetic Control of Malaria and Dengue”, (Adelman, Z. N. ed.) Elsevier, Amsterdam, pp 31-54

Yan, Y. and Scott, M. J. (2015) A transgenic embryonic sexing system for the Australian sheep blow fly Lucilia cuprina Rep.5, 16090; doi: 10.1038/srep16090. web

Scott, M.J. (2014) Development and evaluation of male-only strains of the Australian sheep blowfly Lucilia cuprina, BMC Genetics15(Suppl 2):S3. doi:10.1186/1471-2156-15-S2-S3. web

Li, F., Wantuch, H.A., Linger, R.J., Belikoff, E.J. and Scott, M.J. (2014) Transgenic sexing system for genetic control of the Australian sheep blow fly Lucilia cuprina. Insect Biochemistry and Molecular Biology, 51: 80-88. doi: 10.1016/j.ibmb.2014.06.001. web

Sandeman, R. M., Levot, G., Heath, A. G., James, P. J., Greeff, J. C., Scott, M. J. and Bowles, V. M. (2014) Control of the Sheep Blowfly – are we there yet?, Int. J. Parasitol., 44: 879-891. doi: 10.1016/j.ijpara.2014.08.009. web

Scott, M.J., Morrison, N.I., Simmons, G.S. (2014) Transgenic approaches for sterile insect control of dipteran livestock pests and lepidopteran crop pests. In: “Transgenic Insects: Techniques and Applications” (Benedict, M.Q., ed.) pp 152-167, CABI, Wallingford, UK. web

Concha, C., Belikoff, E.J., Carey, B., Li, F., Schiemann, A.H., and Scott, M.J. (2011) Efficient germ-line transformation of the economically important pest species Lucilia cuprina and Lucilia sericata (Diptera, Calliphoridae). Insect Biochemistry and Molecular Biology, 41: 70-75. doi:10.1016/j.ibmb.2010.09.006. web

Sarkar, A., Atapattu, A., Belikoff, E.J., Heinrich, J.C., Li, X., Horn, C., Wimmer, E.A. and Scott, M.J. (2006) Insulated piggyBac vectors for insect transgenesis. BMC Biotechnology. 6: 27. doi:10.1186/1472-6750-6-27 web

Scott, M.J., Heinrich, J.C. and Li, X. (2004) Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. Insect Biochem Mol Biol, 34: 185-192. web

Heinrich, J.C., Li, X., Henry, R.A., Haack, N., Stringfellow, L., Heath, A. and Scott, M.J. (2002) Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. Insect Mol. Biol., 11: 1-10. web

Li, X., Heinrich, J.C. and Scott, M.J. (2001) piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression Insect Mol. Biol., 10: 447-455. web

Heinrich, J.C. and Scott, M.J. (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc. Natl. Acad. Sci. USA, 97: 8229-8232. doi:10.1073/pnas.140142697 web